

Scientists are now finding the right angle on dinosaurs by studying their tracks.

In recent years there has been an explosion in research based on dinosaur tracks. Using trackways we can tell whether a dinosaur was walking, trotting, running or wading. We can estimate its speed by looking at the length of the stride and the step angle. Dinosaurs, like humans, are diagonal walkers, which means a line drawn between the heels of opposite footprints is at an angle to the direction of travel. Other important measurements include the angle made between the innermost and outermost toes, and track rotation, which measures the degree to which tracks are turned inward (pigeon-toed) or outward (duck-footed).

oUtcomes

After completing this chapter you will be able to:
measure angles accurately
Q name angles
© classify angles
determine properties of angles
calculate the size of complementary and supplementary angles, vertically opposite angles and angles in a revolution.

Prepare for this chapter by attempting the following questions. If you have difficulty with a question, click on the Replay Worksheet icon on your e Maths Zone CD or ask your teacher for the Replay Worksheet.
1 State the value indicated by each arrow in the following diagram.

e) Worksheet R5.2

2 Arrange the following angles in order from smallest to largest.
A

D

C

Worksheet R5.3
3 List the pairs of angles which look to be the same size.
A

D

B

C

F

KEY M/ORDA

obtuse angle protractor reflex angle revolution
right angle straight angle supplement supplementary

E.l Measuring cingles

An angle is formed whenever two or more lines meet (or intersect). The corner formed where the lines meet is called the vertex.

Two angles are shown below.
One is less than $\frac{1}{4}$ of a turn and the other is greater than $\frac{3}{4}$ of a turn.

If you are going to measure the size of the angle it is important to be clear about which of the two angles you are going to measure. That is why it is important to mark the actual angle required. The lines which meet to make the angle are sometimes called the arms of the angle.

The size of an angle is the amount of turn from one arm of the angle to the other. We use the unit degree $\left(^{\circ}\right)$ to describe the size of an angle. There are 360° in a full circle. Other useful angles to remember are a quarter turn (of a full circle) which is 90° and a half turn (of a full circle) which is 180°.

We use a protractor to measure the size of angles.

Using a semi-circular protractor

Some protractors are semi-circular, and have two scales marked from 0° to 180° only. The two scales are for measuring angles facing different ways, but can be confusing.

Using a semi-circular protractor is slightly complicated, and the steps followed depend on the type of angle. You must also decide which of the two scales to use.

For angles less than 180° :

1. Place the centre of the protractor's base on the vertex.
2. Line up the base of the protractor with one of the arms of the angle.
3. Use the scale on the protractor base that starts at 0°, and read the number of degrees the angle spans. (It may be necessary to extend the angle's arms.)

A 60° angle. Notice how the inner scale is used, because this is the one that has 0° on the bottom arm of the angle.

For angles greater than 180° :

1. Measure the 'other side angle' as shown using the method described above. The other side angle in our example here measures 40°.

A 125° angle facing the other way. This time the outer scale is used.
2. Subtract this other side angle from 360° to find the desired angle.

$$
\begin{array}{r}
360^{\circ} \\
-\quad 40^{\circ} \\
\underline{320}^{\circ}
\end{array}
$$

Using a circular protractor

A circular protractor marked from 0° to 360° is shown opposite. To measure an angle with a circular protractor:

1. Place the centre dot of the protractor on the vertex.
2. Line up the horizontal 0° centre-line of the protractor with one of the arms of the angle. (You may have to turn around the angle to do this.)

RETURN TO MAIN MENU

3. Read where the other arm of the angle cuts the outer scale of the protractor. (It may be necessary to extend the angle's arms.)

48 clolnci=210!ne

It is easy to make a mistake when using a protractor and use the wrong scale. You should always make an estimate of the angle before measuring it. You can then make sure your measurement of the angle is reasonable.

Sometimes when you go to measure the size of an angle you find that the arm of the angle is too short to pass through the scale on the protractor. When this occurs you can just extend the length of the arm. This does not change the size of the angle. Use a ruler and be careful that the line is straight.

exeratse 5.1 Measuring angles

(3) Preparation: Prep Zone Q1

hi.com.au

core

1 Use a protractor to measure the size of the following angles. Write your answer to the nearest degree.
(a)

(c)

(b)

(d)

(e)

(h)

2 Use a protractor to measure the size of the following angles. Write your answer to the nearest degree.
(a)
) (b)
(b)

(c)

(d)

(e)

3 Use a protractor to measure the size of the following angles. Write your answer to the nearest degree.

Hint

(a)

(b)
(c)

4 Use a protractor to measure the size of the following angles. Write your answer to the nearest degree.
(a)

(c)

(b)

(d)

5 Use a protractor to measure the size of the following angles. Write your answer to the nearest degree.
(a)

(b)

(e)

(h)

(g)

Extension

6 Choose the correct answer.
When you measure the size of the angle between the ladder and the wall in the photo, you find it is:
A 150°
e) Hint
B 48°
C 33°
D 27°

7 Measure the angle of ascent (the angle between the flight path and the
Hint

8 Measure the angle of elevation $\left(e^{\circ}\right)$ to the mountain top in the diagram.

9 Choose the correct answer.
When you measure the angle of depression $\left(d^{\circ}\right)$ to the ship in the diagram, you find it is:
A 50°
B 40°
C 140°
D 130°

10 Tiger plans his assault on a particular golf hole by drawing the ideal path that his ball should take.

eQuestions
What is the size of the angle between the two ideal paths?
eQuestions

Working mathematically

problem solving

count the amgles

How many angles can you count in the diagram?
Measure each one.

There are more angles here than you may think. Don't forget the big ones.

Gperdingrome

Do these in your head as quickly as you can and write down the answers.

112×50
$24000 \div 80$
$3300-4 \times 60$
$4210-400$
$5 \sqrt{49}+3^{2}$
$6 \frac{1}{4}$ of 36
7 What is the size of each angle after a straight angle has been divided into 3 equal angles?
8 How many 25 c lollies can you buy for $\$ 4.00$?
9 If you sleep for 7 hours, how many minutes do you sleep for?
10 If $a=5$, find $a^{2}-3$.

E. F Fstimoting cincles

Now that you have had experience using a protractor to measure angles, you should be better at giving rough estimates of the size of angles without using a protractor. When estimating angles, try to visualise a 360° circular protractor and think about how much of the complete circle you have covered.

eTutorial

(P) Preparation: Prep Zone Q1-3, Ex 5.1

In this exercise, do not use a protractor unless specifically asked to. Refer to a diagram of a circular protractor if necessary to help you.

core

$\mathbf{1}$ List the following angles in order of increasing size (i.e. smallest to largest).
(a) A

C

(b) A

C

B

2 Choose the correct answer.
(a) The angle shown here is about:

A 20°
B 45°
C 60°
D 85°

(b) The angle shown here is about:

A 100°
B 145°
C 185°
D 200°

(c) The angle shown here is about:

A 190°
B 230°
C 280°
D 310°

(d) The angle shown here is about:

A 60°
B 120°
C 240°
D 300°

3 Choose the correct answer.
(a) Which of the angles below is about 170° ?

(b) Which of the angles below is about 265° ?

C

(c) Which of the angles below is about 5° ?
A
B
C \qquad

(d) Which of the angles below is about 330° ?

B

4 Estimate the size of each of these angles. Copy the table on the following page and complete only the first column.
(a)

(b)
(c)

(d)

(e)

(f)

(g)

(h)

(j)
(i)

| Angle | Estimate | Measured value | Error |
| :---: | :---: | :---: | :---: | :---: |
| (a) | | | |
| (b) | | | |
| (c) | | | |
| (d) | | | |
| (e) | | | |
| (f) | | | |
| (g) | | | |
| (h) | | | |
| (i) | | | |
| (j) | | | |

Extension

5 Now measure each of the angles in Question 4
Hint
Hint using a protractor, and complete the table. You will need to extend the length of the arms. The error is the difference between your estimate and the measured value. It doesn't matter whether the estimate is greater than or smaller than the measured value. How does your angle-estimating ability compare with that of your classmates?

E-25 Drcuring cinciles with d protrcctor

Using a semi-circular protractor

1. If the angle is less than 180°, follow the procedure given for a circular protractor (below).
2. If the angle is greater than 180°, proceed as follows. An example of 200° is used to explain the procedure. Calculate the'other side angle' by subtracting from 360°.

$$
\begin{array}{r}
360^{\circ} \\
-200^{\circ} \\
\underline{160}^{\circ}
\end{array}
$$

3. Draw a base line and a vertex dot. (A vertex dot marks the location of the angle's corner.)
4. Place the protractor upside down so its zero is on the base line and its centre is on the vertex dot.
5. Locate 160° (start at 0° on the base line and move clockwise) and mark a small dot on the edge of the scale as shown.
6. Remove the protractor and join the small dot to the vertex dot.
7. Mark the other side of the angle drawn, as this is the
 angle desired.

Using a circular porotractor

1. Draw a base line and a vertex dot.
2. Place the zero of the protractor on the base line with its centre on the vertex dot.
3. Locate the desired angle (e.g. 75°) and mark a small dot on the edge of the scale as shown.
4. Remove the protractor and join the small dot to the vertex dot.
5. Mark the angle with a small arc as shown.

exeratse 5.5 Drowing oncles with a protractor

Preparation: Prep Zone Q1, Ex 5.1

You will need: A protractor.

Core

1 Draw the following angles using a protractor.

(c) 6°
(d) 36°
(e) 55°
(f) 84°

2 Draw the following angles using a protractor.
(c) 130°
(a) 95°
(b) 151°
(f) 108°
(d) 100°
(e) 175°

3 Draw the following angles using a protractor.
(a) 182°
(b) 260°
(c) 222°
(d) 205°
(e) 235°
(f) 257°

4 Draw the following angles using a protractor.
\square
Hint

Hint

(a) 290°
(b) 318°
(c) 275°
(d) 334°
(e) 300°
(f) 247°

Extension

5 Draw the following angles without a protractor.
(a) 180°
(b) 360°

6 For each of the following draw a circle then divide it into wedges with the following angles at the centre.
(a) $100^{\circ}, 210^{\circ}, 50^{\circ}$
(b) $90^{\circ}, 90^{\circ}, 72^{\circ}, 108^{\circ}$
(c) $40^{\circ}, 140^{\circ}, 180^{\circ}$
(d) $32^{\circ}, 161^{\circ}, 85^{\circ}, 82^{\circ}$
(e) $215^{\circ}, 34^{\circ}, 71^{\circ}, 40^{\circ}$
(f) $19^{\circ}, 28^{\circ}, 172^{\circ}, 141^{\circ}$

Working mathematically

problem solving

Ella's angles

Ella needs to draw a 60° angle, but she has lost her protractor. She has a stencil that can draw 90° and 40° angles. How can she use these two angle sizes to draw a 60° angle?

Ella will need to use a series of steps to construct her angle.

Working mathematically

Iियeजtीcciom

Dot papeer angles

1 Draw as many different angles as you can on separate 3×3 dot grids so that each angle starts and ends on a dot and has its corner (vertex) on a dot. One example is shown opposite. Use a protractor to measure each angle and write the number of degrees next to each one. Did you find the ten different possible angles? If you found more than ten, check carefully-some of your angles may actually be the same size. You may like to work with a partner to make sure all possible angles are found.
2 Choose one of the angles from Question 1 and, on a new $3 \mathrm{~cm} \times 3 \mathrm{~cm}$ grid, draw this angle in as many different positions as possible. You may wish to colour the resulting pattern. The pattern for one of the angles is shown opposite.

3 Try Question 2 for several of the other angles.
4 Investigate the possible angles for a
 larger (e.g. 4×4) grid, and try to produce some patterns using repeated angles.

mathes in action

It is often said that a person's skill at billiards or pool is a sign of misspent youth, but top players could claim to have worked hard at their maths.

The game of billiards originated in France in the early 1500s. First a railing was added to the edges, then a cushion in 1835, allowing players to bounce the ball off the sides with speed and accuracy. The object of the game was to use the white ball to hit both the red ball and the spot ball with the same shot-this was called a cannon. The modern game was developed later by the British and uses a 12 foot by 6 foot table (3.66 m by 1.83 m). Important in planning shots is the fact that a ball bounces off a side at the same angle at which it approaches.

Questions

Imagine a' 6×4 ' billiard table with pockets at the corners only, and a ball hit from a corner at an angle of 45° to a side of the table.

Assuming that:

- the rebound angle equals the approach angle for each collision the ball makes with a side of the table, and
- the ball doesn't stop rolling until it falls into a corner pocket, the path of the ball can be traced as shown.
1 On square centimetre grid paper, draw tables of the
 dimensions given, and trace the path of a ball hit from a corner at an angle of 45° to a side until the path ends at a pocket.
(a) $1 \mathrm{~cm} \times 4 \mathrm{~cm}$
(b) $2 \mathrm{~cm} \times 8 \mathrm{~cm}$
(c) $3 \mathrm{~cm} \times 12 \mathrm{~cm}$
(d) $3 \mathrm{~cm} \times 4 \mathrm{~cm}$
(e) $9 \mathrm{~cm} \times 12 \mathrm{~cm}$
(f) $5 \mathrm{~cm} \times 6 \mathrm{~cm}$
(g) $4 \mathrm{~cm} \times 5 \mathrm{~cm}$
(h) $8 \mathrm{~cm} \times 10 \mathrm{~cm}$
(i) $3 \mathrm{~cm} \times 8 \mathrm{~cm}$
(j) $5 \mathrm{~cm} \times 7 \mathrm{~cm}$
(k) $4 \mathrm{~cm} \times 9 \mathrm{~cm}$
(l) $7 \mathrm{~cm} \times 9 \mathrm{~cm}$
(m) $6 \mathrm{~cm} \times 11 \mathrm{~cm}$
(n) $5 \mathrm{~cm} \times 5 \mathrm{~cm}$

2 Copy and complete the table below using your diagrams from Question 1.

	Table dimensions	No.bounces		Table dimensions	No. bounces
(a)	1×4		(h)	8×10	
(b)	2×8		(i)	3×8	
(c)	3×12		(j)	5×7	
(d)	3×4		(k)	4×9	
(e)	9×12		(1)	7×9	
(f)	5×6		(m)	6×11	
(g)	4×5		(n)	5×5	

3 If you can, explain how you can predict:
(a) whether or not the ball will visit every square
(b) how many bounces will occur
(c) which pocket the ball will end up in.

4 If you answered Question 3(b), predict how many bounces will occur for a 56×42 table.
5 (a) On square centimetre grid paper, trace the path of a ball hit from the position shown on a 5×10 table.

(b) Try starting from different positions and trace the paths.

Activity

Use your understanding of angles to play a game of online pool at this site.

Eal Describing argules

Angles may be classified as one of the following types:

Acute angle: less than 90° - smaller than a square corner.

Right angle: exactly 90° a square corner, a $\frac{1}{4}$ turn. A small square drawn in the corner of an angle means it is a right angle.

Obtuse angle: more than 90° but less than 180°-bigger than a square corner.

Straight angle: exactly
180° - a straight line angle, a half turn.

Reflex angle: greater than 180° but less than 360°-like the angle on the outside of a bent knee.

Revolution: 360° a full circle.

Naming arngles

Capital letters may be used to help us describe angles. The angle shown may be described as angle $A B C, \angle B$ or $\angle A B C$. (\angle is the symbol for angle.) $\angle C B A$ or $C B A$ is also correct. We can use the same letters to name points, lines and intervals.

Notice that the letter on the corner of the angle (the vertex) goes in the middle of the three letters. In this case the B must be in the middle.

exeraise 5.4 nescribing omgles

P) Preparation: Prep Zone 01 and 2, Ex 5.2

Core

1 State the type of angle shown in each case.

Worksheet C5.3
(a) \qquad
(d)

(b)

(c)

(e)

(f)

(g)

(h)

(j)

(k)

(i)

(o)
(1)

(m)

(n)

(p)

(q)

(r)

(s)

(t)

(u)

2 State the type of angle given in each case.
(a) 23°
(b) 117°
(c) 275°
(d) 360°
(e) 180°
(f) 75°
(g) 90°
(h) 162°
(3) Draw two examples of:

Hint

(a) an acute angle
(b) a reflex angle
(c) an obtuse angle.

4 Give a letter name for each of the following angles.

> Worksheet C5.4
(a)

(b)

(c)

(d)

(e) S

5 Draw any angle which may be named:
(a) $\angle P Q R$
(b) $\angle G$
(c) $\angle K$
(d) $\angle D E F$

Extension

6 Give the letter name of:
(a) each acute angle in the diagram, using three letters
(b) each obtuse angle in the diagram, using three letters
(c) the point where CO touches $D A$, using one letter
(d) the line that meets $D A$ at
 right angles, using two letters.
7 (a) Measure the reflex angle $R M S$ in the diagram.
(b) Measure the reflex angle $P M S$ in the diagram.
(c) Why is it necessary to specify'reflex' in parts (a) and (b) above?

eQuestions
Homework 5.1
Worksheet A5. 3
Worksheet A5. 4

RETURN TO MAIN MENU

Working mathematically

computer fivertfoctom

Cabri

Complementary and supplementary angles

Angles on a line and angles in a right angle have certain properties. To answer the following questions, click on the icons to the right to open the Cabri Geometry files on complementary and supplementary angles. Observe what happens to the sizes of the angles when you drag the point.

1 What can you say about angles on a straight line? These are called supplementary angles.
2 What can you say about angles in a right angle? These are called
(e) Interactive complementary angles.

E-F Complementary cinct supplementary cheles

Complementary angles add up to 90° (a right angle).
40° and 50° are complementary angles because together they add up to 90°.

If two angles are complementary, we say each is the complement of the other. For example, 40° is the complement of 50°.

Supplementary angles add up to $\mathbf{1 8 0}^{\circ}$ (a straight angle).
100° and 80° are supplementary angles because together they add up to 180°.

If two angles are supplementary, we say each is the supplement of the other. For example, 100° is the supplement of 80°.

One way of avoiding getting mixed up with these definitions is to remember that, when counting, 90 comes before 180, and when reciting the alphabet, C comes before S .

C	\rightarrow	S
90°	\rightarrow	180°

MOFKес exarfole 1

(a) What is the complement of 11° ?
(b) What is the supplement of 57° ?
(c) Find the size of angle x°.
(d) Find the size of angle y°.

Steps

(a) An angle and its complement must add up to 90°, so we subtract 11° from 90° to find the complement.
(b) An angle and its supplement add up to 180°, so we subtract 57° from 180° to find the supplement.
(c) x° and 78° are shown as supplementary angles, so we subtract 78° from 180° to find x°.
(d) y° and 19° are shown as complementary angles, so we subtract 19° from 90° to find y°.

solutions

(a) 90°
$-\frac{11}{79}^{\circ}$
The complement of 11° is 79°.
(b) 180°
-57°
$\overline{123}^{\circ}$
The supplement of 57° is 123°.
(c) 180°

$$
\begin{aligned}
& -\frac{78^{\circ}}{102^{\circ}} \\
& x^{\circ}=102^{\circ}
\end{aligned}
$$

(d) 90°

$$
\frac{-\frac{19}{}^{\circ}}{y^{\circ}=71^{\circ}}
$$

Complementary angles add up to 90°

Supplementary angles add up to 180°

exerafe 5.5 complementary and
 supplementary angles

(P) Preparation: Ex 5.4

Core

1 Find the size of angle x° in each case.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

eTester

Hint

2 Find the complement of the following angles.
(a) 27°
(b) 45°
(c) 68°
(d) 15°

3 Choose the correct answer.
(a) Which one of the following is a pair of complementary angles?
A 330° and 30°
B 30° and 150°
C 15° and 75°
D 60° and 40°
(b) Which one of the following is a pair of supplementary angles?

Worksheet C5.5
Worksheet C5.5
e) Hint
A 0° and 90°
B 45° and 55°
C 90° and 90°
D 200° and 160°
(c) Which diagram shows supplementary angles?

(e) Worksheet C5.6

4 Find the size of angle y° in each case.
(a)
(b)

(c)

Hint

(d)
(f)

(g)

5 Find the supplement of the following angles. \square
(a) 32°
(b) 90°
(c) 124°
(d) 176°

Extension

6 Determine the size of angle a° in each case.
(a)

(c)

(d)

(e)
(f)

7 (a) Write two examples of pairs of complementary angles.
(b) Write two examples of pairs of supplementary angles.

8 (a) Explain why adjacent angles adding to 90° form a right angle.
(b) Explain why adjacent angles adding to 180° form a straight angle.

Mollaghrome

Answer the following, showing your working, then arrange the letters in the order shown by the corresponding answers to find the cartoon caption.
The following are angles in a right angle. Find the value of the pronumeral.
$37^{\circ}, n^{\circ}$
$\mathbf{N} \quad 56^{\circ}, u^{\circ}$
$\mathbf{U} \quad 29^{\circ}, 36^{\circ}, c^{\circ} \mathbf{C}$
$12^{\circ}, 57^{\circ}, 1^{\circ} \mathbf{L}$ The following are angles on a straight line. Find the value of the pronumeral. $29^{\circ}, a^{\circ} \quad \mathbf{A} \quad 142^{\circ}, t^{\circ} \quad \mathbf{T} \quad 13^{\circ}, 59^{\circ}, g^{\circ} \mathbf{G} \quad 72^{\circ}, 53^{\circ}, e^{\circ} \mathbf{E}$

25°	34°	38°	55°

151°	53°	108°	21°	55°

Er. Anctes in a revolution

We can see from the circular protractor that there are 360° in a revolution.

If more than one angle can be added together to complete one full revolution (a circle), then the angles must add up to 360°.

worked example 2

Find the size of each of the unknown angles below.
(a)

(b)

steps

(a) Subtract the known angle from 360° to find the value of a°.
(b) 1. Add the known angles.

solutions

(a) 360°
$a^{\circ}=\frac{-38^{\circ}}{322^{\circ}} \frac{61^{\circ}}{}$

$$
+\frac{215^{\circ}}{276^{\circ}}
$$

2. Subtract the total of the known angles

$$
360^{\circ}
$$ from 360° to find the value of b°.

$$
b^{\circ}=\frac{-276^{\circ}}{84^{\circ}}
$$

EXERGFE 5.6 Angles in a revolution

(P) Preparation: Ex 5.4

core

1 Find the value of the pronumeral in each case.
(a)

(b)

(c)

Hint
Worksheet C5.8
(d)

(e)

(g)

(h)

(i)

2 Find the value of the angle in each diagram below.
(a)

(b)

(c)

(d)

(e)

(f)

3 Find the value of the angle in each of the following.
(a)

(b)

4 Write two examples of three angles that add to make a revolution.
Worksheet A5.5
5 Explain why adjacent angles adding to 360° form a revolution.

Working mathematically

computer finertectom

Vertically opposite angles

When two lines intersect, four angles are formed. To answer the following question, click on the icon to the right to open the Cabri

You will need to download Cabri Geometry from the eMaths Zone CD if you haven't already done so.

Geometry files on these angles. Observe what happens to the sizes of the angles when you move any of the points.
What can you say about vertically opposite angles? Explain why. You might want to refer to supplementary angles in your explanation.

E.7 Mertically opposite cinges

Whenever two lines intersect, four angles are formed. In the following diagram these angles have been labelled as $a^{\circ}, b^{\circ}, c^{\circ}$ and d°. Pairs of angles like a° and c° are given a special name-
 they are called vertically opposite angles.

There is another pair of vertically opposite angles in the diagramb° and d°.

If you measured a° and c° with your protractor you would find they were the same size. The same is true for b° and d°. Check both of these pairs of angles for yourself.

Vertically opposite angles occur on either side of the point where two straight lines intersect. Vertically opposite angles are equal.

eTutorial

exeralse 5.7 Wertical/y opposite amoles

(P) Preparation: Exs 5.5 and 5.6

core

1 Below are four pairs of vertically opposite angles labelled with pronumerals. Measure the size of the pairs of the vertically opposite angles.
(a)

(b)

2 Find the value of x° in each case.
(a)

(b)

(c)

(d)

(e)

(f)

Extension

3 Find the value of the pronumerals in each case.
(a)

(b)

(c)

Ionciucicherone

Summary

Copy and complete the following summary of this chapter using the words and phrases from the list. A word or phrase may be used more than once.
1 To measure an angle, the dot on the p \qquad must match up with the \qquad of the angle. The lines must match up with the arms of the angle.
2 An angle of 40° has a \qquad of 50°.
3 \qquad angles add to 180 \qquad .
4 \qquad angles are equal.
5 The angle names listed in order from largest to smallest are r \qquad
\qquad
\qquad , \qquad - \qquad _,
\qquad
\qquad and \qquad .

Questions

1 Use a dictionary to find the non-mathematical meanings of the words 'acute','obtuse' and'reflex'. (Don't write these definitions down.) Use these definitions to explain why these names are given to certain angles.
2 Another word for 'revolution' is'perigon'. Guess what the prefix'peri-' means, then look it up in the dictionary. Find two words that start with'peri' and have related definitions. Write their meanings.
3 If a revolution is split into two angles and one of them is reflex, what kind of angle is the other? Is there more than one option?
4 A revolution is divided into three equal angles. What kind of angles are they?
5 Explain the difference between 'complementary' and 'supplementary'.
6 Unjumble these words:
TMMLOPCEEN NTIORLUEVO ROTCTPRAOR
7 Write the key words from the list above that have part of the following words in them:
flexible revolve supply comply

Key words
acute angle complement complementary degrees obtuse angle protractor reflex angle revolution right angle straight angle supplement supplementary vertex vertically opposite

charosertan

FAQS

I keep getting confused with which protractor scale to use (the inside or outside one) when measuring angles. How can I be sure I am using the right one?
You need to use the scale that starts at zero on the arm you are measuring from. Also, you should always estimate the size of the angle first. This is a way of checking your answer.

Is a 90° angle called acute?

No, a 90° angle is called a right angle. An acute angle must be less than 90°.

Is $\angle A B C$ the same as $\angle C B A$?

Yes, these angles are the same. Angles can be read from either side, but it is important that the letter on the corner of the angle goes in the middle of the angle name.

core

hi.com.au
1 Use a protractor to measure each of the following angles.

5.1

(c)

(d)
(e)

(f)

2 Draw an angle of each size stated.
(a) 56°
(b) 162°
(c) 257°
(d) 304°

3 Choose the correct answer.
Which of the following is not true of the angle shown?
A It is named $\angle N P M$.
B It is named $\angle M N P$.
C It is approximately 120°.
D It is an obtuse angle.
4 Choose the correct answer.
Which of the following is true of the angle shown?
A It is obtuse.
B It is reflex.
C It is less than 180°.
D It is called $\angle C F G$.

5 State the type of each angle below (i.e. acute etc.).
(d)

(a)

5.3

\section*{5.4}

6 Find the value a° in each of the following diagrams.

5.5

(a) \qquad
(b)

(c)

(d)

7 Find the value of the pronumeral in each case.
(a)

(b)

8 Find the value of the pronumeral in each case.
(a)

Extension

9 Eloise has constructed a mechanical leg to kick a football as part of her physical education investigation into kicking techniques. During one trial, the initial leg position was as shown. Find the size of the reflex angle of the leg.

10 Building the Leaning Tower of Pisa began in about the 12th century in Pisa, Italy. Ever since, it has gradually been tipping sideways, and it would have eventually fallen over if engineers and architects hadn't found a way to stabilise the base.
(a) Measure the angle that the tower leans over from vertical.
(b) If it has been falling for 800 years, calculate the average angle it moves each year.

11 On the clock face shown, what is the smaller angle made at the centre if the hands are pointing at:
(a) 12 and 2
(b) 12 and 7
(c) 2 and 7?

$5.1,5.6$

1 Write the following Hindu-Arabic numbers as Roman numerals.
(a) 12
(b) 49
(c) 368
(d) 3056

2 Copy and complete the following magic squares.
1.3
(a)

18		16
	15	
14		

(b)

10	5	12
6		

(c)

7		15
	13	
		19

3 Calculate:
(a) $(2+7) \times 6$
(b) $15 \div 5+7 \times 4$
(c) $600 \div(5 \times(3+9))$

4 Find the next three numbers in each pattern.
(a) $-7,-4,-1$, \qquad —, -
(b) $16,8,0$, \qquad , —,
(c) $22,12,2, \ldots, \ldots$

5 Calculate:
(a) $-56+60$
(b) $-45-120$
(c) $-67+100-12$

6 Calculate:
(a) -9×7
(b) -12×-30
(c) $-3 \times 4 \times-5$

7 Write the first four multiples of each of the following.
(a) 7
(b) 12
(c) 15

8 Which of the following numbers are divisible by 9 ? (Use the correct divisibility test, not your calculator.) 108, 569, 4734, 9512, 18999,28008
9 Simplify:
(a) $5^{2}+2^{3}$
(b) 2^{6}
(c) $2^{4} \times 10^{4}$

10 Copy and complete the following number patterns.

3.8

(a) $65,56,47$, \qquad (b) 1, 4, 9, \qquad —, -

11 Write the following expressions using pronumerals n for the IN number and m for the OUT number.
(a) Multiply the IN number by two to get the OUT number.
(b) Add five to the IN number to get the OUT number.
(c) Subtract seven from the IN number then divide by two to get the OUT number.

12 If $y=2 x-3$, find the value of y when:
(a) $x=0$
(b) $x=4$
(c) $x=-7$

Assignment 5

